崩坏,为了活着所以抱歉了

分子生物学(1)

加入书架
书名:
崩坏,为了活着所以抱歉了
作者:
喜欢番薯花的陆铁山
本章字数:
5292
更新时间:
2025-04-15

分子生物学是一门从分子水平研究生命现象、生命本质、生命活动及其规律的科学。以下是其相关概念的具体介绍:

研究内容

- 核酸的结构与功能:主要研究DNA(脱氧核糖核酸)的双螺旋结构、复制、转录以及RNA(核糖核酸)的结构与功能,包括mRNA(信使RNA)、tRNA(转运RNA)、rRNA(核糖体RNA)等在遗传信息传递和表达中的作用。

- 蛋白质的结构与功能:关注蛋白质的一级结构(氨基酸序列)、二级结构(如α - 螺旋、β - 折叠等)、三级结构和西级结构,以及蛋白质的折叠、修饰、定位和其作为酶、受体、结构蛋白等在细胞生命活动中的功能。

- 基因表达调控:探索基因在不同组织、不同发育阶段以及不同环境条件下的表达调控机制,如转录水平的调控(转录因子与启动子、增强子的相互作用等)、转录后水平的调控(mRNA的加工、稳定性等)、翻译水平的调控及翻译后水平的调控。

核心技术

- 基因克隆技术:可将目的基因插入载体,导入宿主细胞,实现基因的扩增和表达,用于研究基因的结构与功能、生产生物制品等。

- PCR技术:即聚合酶链式反应,能在体外快速扩增特定DNA片段,广泛应用于基因检测、疾病诊断、法医鉴定等领域。

- 核酸分子杂交技术:如Southern杂交用于检测DNA,Northern杂交用于检测RNA,通过碱基互补配对原理,可检测特定核酸序列的存在、表达水平及分子大小等。

- 基因编辑技术:如CRISPR - Cas9技术,能对基因组进行精确的编辑,包括基因敲除、敲入、碱基替换等,为基因功能研究和基因治疗提供了有力工具。

应用领域

- 医学领域:在疾病诊断方面,可通过检测基因变异进行遗传病、肿瘤等疾病的早期诊断;在疾病治疗方面,基因治疗、RNA干扰技术等为一些疑难杂症提供了新的治疗策略;药物研发方面,基于分子生物学原理开发出针对特定靶点的新型药物。

- 农业领域:通过基因工程技术培育转基因作物,可提高作物的抗病虫害、抗逆能力,改良作物品质。

- 工业领域:利用分子生物学技术改造微生物,可生产生物燃料、酶制剂、氨基酸等工业产品,提高生产效率和产品质量。

——————————————

核酸的化学组成与共价结构:

(1)核酸的化学组成

核酸可分为脱氧核糖核酸(DNA)和核糖核酸(RNA),其化学组成包括以下部分:

元素组成

核酸由碳(C)、氢(H)、氧(O)、氮(N)、磷(P)等元素组成,其中磷元素的含量较为稳定,约占9% - 10%,可用于核酸的定量分析。

基本组成单位

核酸的基本组成单位是核苷酸。而核苷酸又由核苷和磷酸组成,核苷则由戊糖和含氮碱基构成。

戊糖

DNA中的戊糖是β - D - 2 - 脱氧核糖,RNA中的戊糖是β - D - 核糖。两者的区别在于2号位碳原子上,脱氧核糖连接的是氢原子,核糖连接的是羟基。

含氮碱基

包括嘌呤碱和嘧啶碱。嘌呤碱主要有腺嘌呤(A)和鸟嘌呤(G);嘧啶碱主要有胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U)。DNA中含有A、G、C、T西种碱基,而RNA中含有A、G、C、U西种碱基,即RNA中尿嘧啶取代了DNA中的胸腺嘧啶。

磷酸

磷酸基团通过酯键与戊糖的5'碳原子相连,在核苷酸之间的连接以及核酸的结构和功能中起着重要作用。多个核苷酸通过磷酸二酯键连接形成多聚核苷酸链,即核酸。

(2)多聚核苷酸的结构

多聚核苷酸是由多个核苷酸通过磷酸二酯键连接而成的生物大分子,其结构包括一级结构、二级结构和高级结构。具体如下:

一级结构

是指核苷酸的排列顺序。每个核苷酸由磷酸、戊糖(在DNA中是脱氧核糖,在RNA中是核糖)和含氮碱基组成。碱基有腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T,仅DNA有)和尿嘧啶(U,仅RNA有)。核苷酸之间通过3',5'-磷酸二酯键相连,即一个核苷酸的3'羟基与另一个核苷酸的5'磷酸基团形成酯键,如此连接形成多聚核苷酸链,具有5'端(磷酸基团)和3'端(羟基)。

二级结构

- DNA的双螺旋结构:DNA通常由两条反向平行的多聚脱氧核苷酸链组成,两条链围绕同一中心轴相互缠绕形成右手双螺旋结构。碱基位于螺旋内侧,通过氢键形成互补配对,A与T配对(形成两个氢键),G与C配对(形成三个氢键),维持双螺旋结构的稳定性。

- RNA的局部二级结构:RNA通常是单链,但可通过自身折叠形成局部双螺旋结构,如tRNA具有三叶草二级结构,包含氨基酸臂、DHU环、反密码子环、TψC环和可变环等结构域。

高级结构

- DNA的高级结构:在细胞内,DNA会进一步与组蛋白等蛋白质结合形成核小体,核小体串联成串珠状结构,再进一步折叠、压缩,形成染色质的高级结构。

- RNA的高级结构:一些RNA,如rRNA,可与蛋白质结合形成核糖体等复杂的高级结构,在细胞的蛋白质合成等过程中发挥重要作用。

————————————

细胞内的遗传物质:

细胞内的遗传物质是DNA(脱氧核糖核酸)。以下是其相关介绍:

结构特点

DNA是由两条反向平行的多聚脱氧核苷酸链组成的双螺旋结构。两条链通过碱基之间的氢键相互连接,其中腺嘌呤(A)与胸腺嘧啶(T)配对,鸟嘌呤(G)与胞嘧啶(C)配对,这种碱基互补配对原则保证了DNA复制和遗传信息传递的准确性。

遗传信息储存

DNA中的遗传信息储存在碱基的排列顺序中。不同的碱基排列顺序代表了不同的基因,基因是具有遗传效应的DNA片段,它们决定了生物体的各种性状和生理功能。

复制与传递

细胞分裂时,DNA通过半保留复制的方式进行复制,即亲代DNA分子的两条链分别作为模板,合成两条新的子链,每个子代DNA分子都包含一条亲代链和一条新合成的链。通过这种方式,遗传信息从亲代细胞传递到子代细胞,保证了遗传信息的稳定传递和遗传性状的延续。

表达与调控

DNA通过转录将遗传信息传递给mRNA(信使核糖核酸),mRNA再通过翻译合成蛋白质,从而实现遗传信息的表达,控制生物体的新陈代谢、生长发育等生命活动。同时,DNA的表达还受到多种因素的调控,包括基因本身的结构、转录因子、表观遗传修饰等,使得细胞能够根据自身的需要和环境变化精确地调控基因表达。

在一些病毒中,其遗传物质可能是RNA(核糖核酸),如流感病毒、艾滋病病毒等。但对于细胞生物而言,无论是原核细胞还是真核细胞,遗传物质都是DNA。

错乱章节催更!
返回
指南
快捷键指南
全屏模式
上下移动
换章
加入书架 字号
调整字号
A-
A+
背景
阅读背景
错乱漏章催更
  • 新书推荐
  • 热门推荐
  • 猜你喜欢